(0.2*0.0845)+(0.8*0.032)
You asked:
Evaluate the expression: \(0.2 \cdot 0.0845 + 0.8 \cdot 0.032\)
MathBot Answer:
\[0.2 \cdot 0.0845 + 0.8 \cdot 0.032 = \frac{17}{400} = 0.0425\]
\[\begin{aligned}0.2 \cdot 0.0845 + 0.8 \cdot 0.032& = \frac{2}{10} \cdot \frac{845}{10000} + \frac{8}{10} \cdot \frac{32}{1000}\\& = \frac{845}{5} \cdot \frac{1}{10000} + \frac{8}{10} \cdot \frac{32}{1000}\\& = \frac{169}{10000} + \frac{8}{10} \cdot \frac{32}{1000}\\& = \frac{169}{10000} + \frac{4}{5} \cdot \frac{32}{1000}\\& = \frac{169}{10000} + \frac{128}{5} \cdot \frac{1}{1000}\\& = \frac{169}{10000} + \frac{16}{625}\\& = \frac{17}{400}\end{aligned}\]