16,080exp(0.002996 + 0 – 0.011)(3/12)
You asked:
MathBot Answer:
\[16,080 \cdot {e}^{0.002996 + 0 - 0.011} \cdot \frac{3}{12} = \frac{4020}{e^{\frac{2001}{250000}}} \approx 3987.95234580369685787421422992913166\]
\[\begin{aligned}16,080 \cdot {e}^{0.002996 + 0 - 0.011} \cdot \frac{3}{12}& = 16080 \cdot e^{\frac{2996}{1000000} + 0 - \frac{11}{1000}} \cdot \frac{3}{12}\\& = 16080 \cdot e^{\frac{749}{250000} + 0 - \frac{11}{1000}} \cdot \frac{3}{12}\\& = 16080 \cdot e^{\frac{749}{250000} - \frac{11}{1000}} \cdot \frac{3}{12}\\& = 16080 \cdot \frac{1}{e^{\frac{2001}{250000}}} \cdot \frac{3}{12}\\& = 16080 \cdot e^{- \frac{2001}{250000}} \cdot \frac{3}{12}\\& = 4020 \cdot e^{- \frac{2001}{250000}}\end{aligned}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).