log(2.5*10-6)
You asked:
Evaluate the expression: \(\log\left( 2.5 \cdot 10 - 6 \right)\)
MathBot Answer:
\[\log\left( 2.5 \cdot 10 - 6 \right) = \log{\left(19 \right)} \approx 2.94443897916644046000902743188785\]
\[\begin{aligned}\log\left( 2.5 \cdot 10 - 6 \right)& = \log{\left(\left(2 + \frac{5}{10}\right) \cdot 10 - 6 \right)}\\& = \log{\left(\left(2 + \frac{1}{2}\right) \cdot 10 - 6 \right)}\\& = \log{\left(\frac{5}{2} \cdot 10 - 6 \right)}\\& = \log{\left(25 - 6 \right)}\\& = \log{\left(19 \right)}\end{aligned}\]