prove that A+B(A+C)+AC=A+BC
You asked:
Prove or disprove that the equation $A + B \left(A + C\right) + A C = A + B C$ is an identity.
MathBot Answer:
The left-hand side of the equation evaluates to:
\[\begin{align*}& A + B \left(A + C\right) + A C\\=& A + A B + B C + A C\\=& A B + A C + B C + A\\\end{align*}\]The right-hand side of the equation evaluates to:
\[\begin{align*}& A + B C\\=& B C + A\\\end{align*}\]Since $A B + A C + B C + A \ne B C + A$, the equation $A + B \left(A + C\right) + A C = A + B C$ is not an identity.