(4 $y^{4}$ -8x)/(3 $x^{2}$ +x $y^{4}$ )

asked by guest
on Nov 28, 2024 at 9:37 am



You asked:

Evaluate the expression: \(\frac{4 {y}^{4} - 8 x}{3 {x}^{2} + x \cdot {y}^{4}}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{4 {y}^{4} - 8 x}{3 {x}^{2} + x \cdot {y}^{4}} = \frac{- 8 x + 4 y^{4}}{3 x^{2} + y^{4} x} \)


Expanded

\[\frac{4 {y}^{4} - 8 x}{3 {x}^{2} + x \cdot {y}^{4}} = - \frac{8 x}{3 x^{2} + y^{4} x} + \frac{4 y^{4}}{3 x^{2} + y^{4} x}\]


Factored

\[\frac{4 {y}^{4} - 8 x}{3 {x}^{2} + x \cdot {y}^{4}} = - \frac{4 \cdot \left(2 x - y^{4}\right)}{x \left(3 x + y^{4}\right)}\]