5/4 ⋅(e^4−e^−4)

asked by guest
on Nov 22, 2024 at 7:48 pm



You asked:

Evaluate the expression: 54(e4e4)\frac{5}{4} \left({e}^{4} - {e}^{-4}\right)

MathBot Answer:

54(e4e4)=54e4+5e4468.22479299281938112227067897698455\frac{5}{4} \left({e}^{4} - {e}^{-4}\right) = - \frac{5}{4 e^{4}} + \frac{5 e^{4}}{4} \approx 68.22479299281938112227067897698455


54(e4e4)=54(e41e4)=54(e4e4)=54(e4+e4)=54e4+54e4\begin{aligned}\frac{5}{4} \left({e}^{4} - {e}^{-4}\right)&=\frac{5}{4} \cdot \left(e^{4} - \frac{1}{e^{4}}\right)\\&=\frac{5}{4} \cdot \left(e^{4} - e^{-4}\right)\\&=\frac{5}{4} \cdot \left(- e^{-4} + e^{4}\right)\\&=- \frac{5}{4} \cdot e^{-4} + \frac{5}{4} \cdot e^{4}\end{aligned}


ee is Euler's number, a mathematical constant that is approximately 2.718282.71828.