90+7(-2ln(0.4753)^0.5)sin(6.28*0.8741)

asked by guest
on Nov 25, 2024 at 9:25 am



You asked:

Evaluate the expression: 90+7(2ln(0.4753)0.5)sin(6.280.8741)90 + 7 \cdot -\left( 2 {\ln\left( 0.4753 \right)}^{0.5} \right) \cdot \sin\left( 6.28 \cdot 0.8741 \right)

MathBot Answer:

90+7(2ln(0.4753)0.5)sin(6.280.8741)=9014log(475310000)sin(1372337250000)90 + 7 \cdot -\left( 2 {\ln\left( 0.4753 \right)}^{0.5} \right) \cdot \sin\left( 6.28 \cdot 0.8741 \right) = 90 - 14 \sqrt{\log{\left(\frac{4753}{10000} \right)}} \sin{\left(\frac{1372337}{250000} \right)}


90+7(2ln(0.4753)0.5)sin(6.280.8741)=90+712log(475310000)510sin((6+28100)874110000)=90+712log(475310000)sin((6+28100)874110000)=90+712log(475310000)sin((6+725)874110000)=90+712log(475310000)sin(15725874110000)=90+712log(475310000)sin(137233725110000)=90+712log(475310000)sin(1372337250000)=9072log(475310000)sin(1372337250000)=90+14log(475310000)sin(1372337250000)=9014log(475310000)sin(1372337250000)\begin{aligned}90 + 7 \cdot -\left( 2 {\ln\left( 0.4753 \right)}^{0.5} \right) \cdot \sin\left( 6.28 \cdot 0.8741 \right)&=90 + 7 \cdot -1 \cdot 2 \cdot \log{\left(\frac{4753}{10000} \right)}^{\frac{5}{10}} \cdot \sin{\left(\left(6 + \frac{28}{100}\right) \cdot \frac{8741}{10000} \right)}\\&=90 + 7 \cdot -1 \cdot 2 \cdot \sqrt{\log{\left(\frac{4753}{10000} \right)}} \cdot \sin{\left(\left(6 + \frac{28}{100}\right) \cdot \frac{8741}{10000} \right)}\\&=90 + 7 \cdot -1 \cdot 2 \cdot \sqrt{\log{\left(\frac{4753}{10000} \right)}} \cdot \sin{\left(\left(6 + \frac{7}{25}\right) \cdot \frac{8741}{10000} \right)}\\&=90 + 7 \cdot -1 \cdot 2 \cdot \sqrt{\log{\left(\frac{4753}{10000} \right)}} \cdot \sin{\left(\frac{157}{25} \cdot \frac{8741}{10000} \right)}\\&=90 + 7 \cdot -1 \cdot 2 \cdot \sqrt{\log{\left(\frac{4753}{10000} \right)}} \cdot \sin{\left(\frac{1372337}{25} \cdot \frac{1}{10000} \right)}\\&=90 + 7 \cdot -1 \cdot 2 \cdot \sqrt{\log{\left(\frac{4753}{10000} \right)}} \cdot \sin{\left(\frac{1372337}{250000} \right)}\\&=90 - 7 \cdot 2 \cdot \sqrt{\log{\left(\frac{4753}{10000} \right)}} \cdot \sin{\left(\frac{1372337}{250000} \right)}\\&=90 + -14 \cdot \sqrt{\log{\left(\frac{4753}{10000} \right)}} \cdot \sin{\left(\frac{1372337}{250000} \right)}\\&=90 - 14 \cdot \sqrt{\log{\left(\frac{4753}{10000} \right)}} \cdot \sin{\left(\frac{1372337}{250000} \right)}\end{aligned}