2+90%4*4-8

asked by guest
on Apr 03, 2025 at 1:30 am



You asked:

Evaluate the expression: 2+90%4482 + 90 \:\%\: 4 \cdot 4 - 8

MathBot Answer:

2+90%448=22 + 90 \:\%\: 4 \cdot 4 - 8 = 2


2+90%448=2+(90%44)8=2+248=2+88=108=2\begin{aligned}2 + 90 \:\%\: 4 \cdot 4 - 8&=2 + \left(90 \:\%\: 4 \cdot 4\right) - 8\\&=2 + 2 \cdot 4 - 8\\&=2 + 8 - 8\\&=10 - 8\\&=2\end{aligned}


The notation m%nm \% n denotes the remainder of the integer mm divided by the integer nn. m%n=rm \% n = r means that given integers mm and nn, where nn is non-zero, there exist integers qq and rr, where r<n\lvert r \rvert < \lvert n \rvert, such that m=qn+rm = q n + r. MathBot adopts the convention that the remainder rr and the divisor nn share the same sign. Alternate notations for m%nm \% n are mod(m,n)\operatorname{mod}(m, n) and mmodnm \bmod n.