2sinxcosx-cos^2x
You asked:
Evaluate the expression: \(2 \cdot \sin\left( x \right) \cdot \cos\left( x \right) - {\cos\left( x \right)}^{2}\)
MathBot Answer:
Evaluated
\(\displaystyle 2 \cdot \sin\left( x \right) \cdot \cos\left( x \right) - {\cos\left( x \right)}^{2} = 2 \sin{\left(x \right)} \cos{\left(x \right)} - \cos^{2}{\left(x \right)} \)
Factored
\[2 \cdot \sin\left( x \right) \cdot \cos\left( x \right) - {\cos\left( x \right)}^{2} = - \left(- 2 \sin{\left(x \right)} + \cos{\left(x \right)}\right) \cos{\left(x \right)}\]