16s^3 - 18s^2 + 10s - 3 = 0

asked by guest
on Apr 13, 2025 at 10:49 am



You asked:

Solve the equation 16s318s2+10s3=016 {s}^{3} - 18 {s}^{2} + 10 s - 3 = 0 for the variable ss.

MathBot Answer:

The 3 solutions to the equation are: s=38+15512+1551115231319215512+1551115230.60419174s=15512+1551115232+1338415512+155111523+38+i(13338415512+155111523+315512+1551115232)0.26040413+0.49246486is=15512+1551115232+1338415512+155111523+38+i(315512+155111523213338415512+155111523)0.260404130.49246486i\begin{aligned}s &= \frac{3}{8} + \sqrt[3]{\frac{15}{512} + \frac{\sqrt{1551}}{1152}} - \frac{13}{192 \sqrt[3]{\frac{15}{512} + \frac{\sqrt{1551}}{1152}}} \approx 0.60419174\\s &= - \frac{\sqrt[3]{\frac{15}{512} + \frac{\sqrt{1551}}{1152}}}{2} + \frac{13}{384 \sqrt[3]{\frac{15}{512} + \frac{\sqrt{1551}}{1152}}} + \frac{3}{8} + i \left(\frac{13 \sqrt{3}}{384 \sqrt[3]{\frac{15}{512} + \frac{\sqrt{1551}}{1152}}} + \frac{\sqrt{3} \sqrt[3]{\frac{15}{512} + \frac{\sqrt{1551}}{1152}}}{2}\right) \approx 0.26040413 + 0.49246486 i\\s &= - \frac{\sqrt[3]{\frac{15}{512} + \frac{\sqrt{1551}}{1152}}}{2} + \frac{13}{384 \sqrt[3]{\frac{15}{512} + \frac{\sqrt{1551}}{1152}}} + \frac{3}{8} + i \left(- \frac{\sqrt{3} \sqrt[3]{\frac{15}{512} + \frac{\sqrt{1551}}{1152}}}{2} - \frac{13 \sqrt{3}}{384 \sqrt[3]{\frac{15}{512} + \frac{\sqrt{1551}}{1152}}}\right) \approx 0.26040413 -0.49246486 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.