24/-6+3{-4(-2)³-[(-4)²+4(-3)]}.

asked by guest
on Dec 28, 2024 at 9:52 am



You asked:

Evaluate the expression: \(\frac{24}{-6} + 3 \left(-\left( 4 {\left( -2 \right)}^{3} \right) - \left({\left( -4 \right)}^{2} + 4 \cdot -3\right)\right)\)

MathBot Answer:

\[\frac{24}{-6} + 3 \left(-\left( 4 {\left( -2 \right)}^{3} \right) - \left({\left( -4 \right)}^{2} + 4 \cdot -3\right)\right) = 80\]


\[\begin{aligned}\frac{24}{-6} + 3 \left(-\left( 4 {\left( -2 \right)}^{3} \right) - \left({\left( -4 \right)}^{2} + 4 \cdot -3\right)\right)& = - \frac{24}{6} + 3 \cdot \left(- 4 \cdot \left(-2\right)^{3} - \left(\left(-4\right)^{2} + 4 \cdot -3\right)\right)\\& = - \frac{24}{6} + 3 \cdot \left(- 4 \cdot -8 - \left(\left(-4\right)^{2} + 4 \cdot -3\right)\right)\\& = - \frac{24}{6} + 3 \cdot \left(- -32 - \left(\left(-4\right)^{2} + 4 \cdot -3\right)\right)\\& = - \frac{24}{6} + 3 \cdot \left(32 - \left(\left(-4\right)^{2} + 4 \cdot -3\right)\right)\\& = - \frac{24}{6} + 3 \cdot \left(32 - \left(16 + 4 \cdot -3\right)\right)\\& = - \frac{24}{6} + 3 \cdot \left(32 - \left(16 - 12\right)\right)\\& = - \frac{24}{6} + 3 \cdot \left(32 - 4\right)\\& = - \frac{24}{6} + 3 \cdot 28\\& = - \frac{24}{6} + 84\\& = 80\end{aligned}\]