33847686768765896857minus74627387659equals

asked by guest
on Apr 01, 2025 at 9:43 am



You asked:

Evaluate the expression: 338476867687658968577462738765933847686768765896857 - 74627387659

MathBot Answer:

3384768676876589685774627387659=33847686694138509198 33847686768765896857 - 74627387659=33847686694138509198


338476867661687655158986168751471700000000007462738765933847686694138509198 \begin{aligned} \mathtt{3}\mathtt{3}\mathtt{8}\mathtt{4}\mathtt{7}\mathtt{6}\mathtt{8}\mathtt{6}\overset{\mathtt{{\scriptscriptstyle 6}}}{\cancel{\mathtt{7}}}\overset{\mathtt{{\scriptscriptstyle 16}}}{\cancel{\mathtt{6}}}\mathtt{8}\mathtt{7}\overset{\mathtt{{\scriptscriptstyle 5}}}{\cancel{\mathtt{6}}}\overset{\mathtt{{\scriptscriptstyle 15}}}{\cancel{\mathtt{5}}}\mathtt{8}\overset{\mathtt{{\scriptscriptstyle 8}}}{\cancel{\mathtt{9}}}\overset{\mathtt{{\scriptscriptstyle 16}}}{\cancel{\mathtt{6}}}\overset{\mathtt{{\scriptscriptstyle 7}}}{\cancel{\mathtt{8}}}\overset{\mathtt{{\scriptscriptstyle 14}}}{\cancel{\mathtt{5}}}\overset{\mathtt{{\scriptscriptstyle 17}}}{\cancel{\mathtt{7}}}\\ \mathtt{-\phantom{0}}\phantom{0}\phantom{0}\phantom{0}\phantom{0}\phantom{0}\phantom{0}\phantom{0}\phantom{0}\phantom{0}\mathtt{7}\mathtt{4}\mathtt{6}\mathtt{2}\mathtt{7}\mathtt{3}\mathtt{8}\mathtt{7}\mathtt{6}\mathtt{5}\mathtt{9}\\ \hline \mathtt{3}\mathtt{3}\mathtt{8}\mathtt{4}\mathtt{7}\mathtt{6}\mathtt{8}\mathtt{6}\mathtt{6}\mathtt{9}\mathtt{4}\mathtt{1}\mathtt{3}\mathtt{8}\mathtt{5}\mathtt{0}\mathtt{9}\mathtt{1}\mathtt{9}\mathtt{8} \end{aligned}

Borrow 10110^{1}, resulting in 44 in the 10110^{1} place, and 1717 in the 10010^{0} place.

88 is the digit in the 10010^{0} place. 17×1009×100=8×10017 \times 10^{0} - 9 \times 10^{0} = 8 \times 10^{0}.

Borrow 10210^{2}, resulting in 77 in the 10210^{2} place, and 1414 in the 10110^{1} place.

99 is the digit in the 10110^{1} place. 14×1015×101=9×10114 \times 10^{1} - 5 \times 10^{1} = 9 \times 10^{1}.

11 is the digit in the 10210^{2} place. 7×1026×102=1×1027 \times 10^{2} - 6 \times 10^{2} = 1 \times 10^{2}.

Borrow 10410^{4}, resulting in 88 in the 10410^{4} place, and 1616 in the 10310^{3} place.

99 is the digit in the 10310^{3} place. 16×1037×103=9×10316 \times 10^{3} - 7 \times 10^{3} = 9 \times 10^{3}.

00 is the digit in the 10410^{4} place. 8×1048×104=0×1048 \times 10^{4} - 8 \times 10^{4} = 0 \times 10^{4}.

55 is the digit in the 10510^{5} place. 8×1053×105=5×1058 \times 10^{5} - 3 \times 10^{5} = 5 \times 10^{5}.

Borrow 10710^{7}, resulting in 55 in the 10710^{7} place, and 1515 in the 10610^{6} place.

88 is the digit in the 10610^{6} place. 15×1067×106=8×10615 \times 10^{6} - 7 \times 10^{6} = 8 \times 10^{6}.

33 is the digit in the 10710^{7} place. 5×1072×107=3×1075 \times 10^{7} - 2 \times 10^{7} = 3 \times 10^{7}.

11 is the digit in the 10810^{8} place. 7×1086×108=1×1087 \times 10^{8} - 6 \times 10^{8} = 1 \times 10^{8}.

44 is the digit in the 10910^{9} place. 8×1094×109=4×1098 \times 10^{9} - 4 \times 10^{9} = 4 \times 10^{9}.

Borrow 101110^{11}, resulting in 66 in the 101110^{11} place, and 1616 in the 101010^{10} place.

99 is the digit in the 101010^{10} place. 16×10107×1010=9×101016 \times 10^{10} - 7 \times 10^{10} = 9 \times 10^{10}.

66 is the digit in the 101110^{11} place. 6×10110×1011=6×10116 \times 10^{11} - 0 \times 10^{11} = 6 \times 10^{11}.

66 is the digit in the 101210^{12} place. 6×10120×1012=6×10126 \times 10^{12} - 0 \times 10^{12} = 6 \times 10^{12}.

88 is the digit in the 101310^{13} place. 8×10130×1013=8×10138 \times 10^{13} - 0 \times 10^{13} = 8 \times 10^{13}.

66 is the digit in the 101410^{14} place. 6×10140×1014=6×10146 \times 10^{14} - 0 \times 10^{14} = 6 \times 10^{14}.

77 is the digit in the 101510^{15} place. 7×10150×1015=7×10157 \times 10^{15} - 0 \times 10^{15} = 7 \times 10^{15}.

44 is the digit in the 101610^{16} place. 4×10160×1016=4×10164 \times 10^{16} - 0 \times 10^{16} = 4 \times 10^{16}.

88 is the digit in the 101710^{17} place. 8×10170×1017=8×10178 \times 10^{17} - 0 \times 10^{17} = 8 \times 10^{17}.

33 is the digit in the 101810^{18} place. 3×10180×1018=3×10183 \times 10^{18} - 0 \times 10^{18} = 3 \times 10^{18}.

33 is the digit in the 101910^{19} place. 3×10190×1019=3×10193 \times 10^{19} - 0 \times 10^{19} = 3 \times 10^{19}.