solve 4^2x-1=5^x+2
You asked:
Solve the equation \({4}^{2} \cdot x - 1 = {5}^{x} + 2\) for the variable \(x\).
MathBot Answer:
The 2 solutions to the equation are: \[\begin{aligned}x &= \frac{0.15955262130551873920785492136348292719508603213 + \frac{3 \log{\left(5 \right)}}{16}}{\log{\left(5 \right)}} \approx 0.28663562\\x &= \frac{3.13876284089968049113325414533092871532249607949 + \frac{3 \log{\left(5 \right)}}{16}}{\log{\left(5 \right)}} \approx 2.137723\end{aligned}\]