(3/6 * 14.4 +3/8* 16) -(2/4 *19.2 +1/5 1*2)

asked by guest
on Jan 13, 2025 at 11:19 pm



You asked:

Evaluate the expression: \(\frac{3}{6} \cdot 14.4 + \frac{3}{8} \cdot 16 - \left(\frac{2}{4} \cdot 19.2 + \frac{1}{5} \cdot 1 \cdot 2\right)\)

MathBot Answer:

\[\frac{3}{6} \cdot 14.4 + \frac{3}{8} \cdot 16 - \left(\frac{2}{4} \cdot 19.2 + \frac{1}{5} \cdot 1 \cdot 2\right) = \frac{16}{5} = 3.2\]


\[\begin{aligned}\frac{3}{6} \cdot 14.4 + \frac{3}{8} \cdot 16 - \left(\frac{2}{4} \cdot 19.2 + \frac{1}{5} \cdot 1 \cdot 2\right)& = \frac{3}{6} \cdot \left(14 + \frac{4}{10}\right) + \frac{3}{8} \cdot 16 - \left(\frac{2}{4} \cdot \left(19 + \frac{2}{10}\right) + \frac{1}{5} \cdot 2\right)\\& = \frac{3}{6} \cdot \left(14 + \frac{2}{5}\right) + \frac{3}{8} \cdot 16 - \left(\frac{2}{4} \cdot \left(19 + \frac{2}{10}\right) + \frac{1}{5} \cdot 2\right)\\& = \frac{3}{6} \cdot \frac{72}{5} + \frac{3}{8} \cdot 16 - \left(\frac{2}{4} \cdot \left(19 + \frac{2}{10}\right) + \frac{1}{5} \cdot 2\right)\\& = \frac{36}{5} + \frac{3}{8} \cdot 16 - \left(\frac{2}{4} \cdot \left(19 + \frac{2}{10}\right) + \frac{1}{5} \cdot 2\right)\\& = \frac{36}{5} + 6 - \left(\frac{2}{4} \cdot \left(19 + \frac{2}{10}\right) + \frac{1}{5} \cdot 2\right)\\& = \frac{36}{5} + 6 - \left(\frac{2}{4} \cdot \left(19 + \frac{1}{5}\right) + \frac{1}{5} \cdot 2\right)\\& = \frac{36}{5} + 6 - \left(\frac{2}{4} \cdot \frac{96}{5} + \frac{1}{5} \cdot 2\right)\\& = \frac{36}{5} + 6 - \left(\frac{48}{5} + \frac{1}{5} \cdot 2\right)\\& = \frac{36}{5} + 6 - \left(\frac{48}{5} + \frac{2}{5}\right)\\& = \frac{36}{5} + 6 - 10\\& = \frac{66}{5} - 10\\& = \frac{16}{5}\end{aligned}\]