2x $x^{3}$ +3 $x^{2}$ +x-12138>0

asked by guest
on Jan 10, 2025 at 5:42 pm



MathBot Answer:

\[x < \frac{\sqrt{2} \left(- \sqrt{- \sqrt{-32367 + \left(-2 + \sqrt[3]{97106 + \sqrt{33917833150099}}\right) \sqrt[3]{97106 + \sqrt{33917833150099}}} \cdot \left(4 + \sqrt[3]{97106 + \sqrt{33917833150099}}\right) \sqrt[3]{97106 + \sqrt{33917833150099}} + 32367 \sqrt{-32367 + \left(-2 + \sqrt[3]{97106 + \sqrt{33917833150099}}\right) \sqrt[3]{97106 + \sqrt{33917833150099}}} + 2 \sqrt{2} \sqrt{97106 + \sqrt{33917833150099}}} - \left(-32367 + \left(-2 + \sqrt[3]{97106 + \sqrt{33917833150099}}\right) \sqrt[3]{97106 + \sqrt{33917833150099}}\right)^{\frac{3}{4}}\right)}{4 \sqrt[4]{-32367 + \left(-2 + \sqrt[3]{97106 + \sqrt{33917833150099}}\right) \sqrt[3]{97106 + \sqrt{33917833150099}}} \sqrt[6]{97106 + \sqrt{33917833150099}}} \wedge x > \frac{\sqrt{2} \left(- \left(-32367 + \left(-2 + \sqrt[3]{97106 + \sqrt{33917833150099}}\right) \sqrt[3]{97106 + \sqrt{33917833150099}}\right)^{\frac{3}{4}} + \sqrt{- \sqrt{-32367 + \left(-2 + \sqrt[3]{97106 + \sqrt{33917833150099}}\right) \sqrt[3]{97106 + \sqrt{33917833150099}}} \cdot \left(4 + \sqrt[3]{97106 + \sqrt{33917833150099}}\right) \sqrt[3]{97106 + \sqrt{33917833150099}} + 32367 \sqrt{-32367 + \left(-2 + \sqrt[3]{97106 + \sqrt{33917833150099}}\right) \sqrt[3]{97106 + \sqrt{33917833150099}}} + 2 \sqrt{2} \sqrt{97106 + \sqrt{33917833150099}}}\right)}{4 \sqrt[4]{-32367 + \left(-2 + \sqrt[3]{97106 + \sqrt{33917833150099}}\right) \sqrt[3]{97106 + \sqrt{33917833150099}}} \sqrt[6]{97106 + \sqrt{33917833150099}}}\]