A sin (30) - B cos (25) = 0
A cos (36) - B sin (60) +10 = 0
You asked:
Solve the system of equations:\[\begin{aligned}A \sin\left( 30 \right) - B \cos\left( 25 \right) &= 0\\A \cos\left( 36 \right) - B \sin\left( 60 \right) + 10 &= 0\end{aligned}\]
MathBot Answer:
The system of equations has one solution.\[A = - \frac{10 \cos{\left(25 \right)}}{\left(\frac{\cos{\left(25 \right)} \cos{\left(36 \right)}}{\sin{\left(30 \right)}} - \sin{\left(60 \right)}\right) \sin{\left(30 \right)}}\] \[B = - \frac{10}{\frac{\cos{\left(25 \right)} \cos{\left(36 \right)}}{\sin{\left(30 \right)}} - \sin{\left(60 \right)}}\]