A sin (30) - B cos (25) = 0

A cos (36) - B sin (60) +10 = 0

asked by guest
on Jan 26, 2025 at 2:16 pm



You asked:

Solve the system of equations:Asin(30)Bcos(25)=0Acos(36)Bsin(60)+10=0\begin{aligned}A \sin\left( 30 \right) - B \cos\left( 25 \right) &= 0\\A \cos\left( 36 \right) - B \sin\left( 60 \right) + 10 &= 0\end{aligned}

MathBot Answer:

The system of equations has one solution.A=10cos(25)(cos(25)cos(36)sin(30)sin(60))sin(30)A = - \frac{10 \cos{\left(25 \right)}}{\left(\frac{\cos{\left(25 \right)} \cos{\left(36 \right)}}{\sin{\left(30 \right)}} - \sin{\left(60 \right)}\right) \sin{\left(30 \right)}} B=10cos(25)cos(36)sin(30)sin(60)B = - \frac{10}{\frac{\cos{\left(25 \right)} \cos{\left(36 \right)}}{\sin{\left(30 \right)}} - \sin{\left(60 \right)}}

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls