9^x=25 what is 3^x=?
You asked:
Given \({9}^{x} = 25\) evaluate the expression \({3}^{x}\).
MathBot Answer:
\[3^{x} = 3^{\frac{\log{\left(25 \right)}}{\log{\left(9 \right)}}}\]
The solution is: \[x = \frac{\log{\left(25 \right)}}{\log{\left(9 \right)}} \approx 1.4649735\]
By substituting this value into the expression, we find that: $$\begin{aligned}3^{x} &= 3^{\frac{\log{\left(25 \right)}}{\log{\left(9 \right)}}}\\&= 3^{\frac{\log{\left(25 \right)}}{\log{\left(9 \right)}}}\end{aligned}$$