9^x=25 what is 3^x=?

asked by guest
on Nov 15, 2024 at 2:39 am



You asked:

Given \({9}^{x} = 25\) evaluate the expression \({3}^{x}\).

MathBot Answer:

\[3^{x} = 3^{\frac{\log{\left(25 \right)}}{\log{\left(9 \right)}}}\]


The solution is: \[x = \frac{\log{\left(25 \right)}}{\log{\left(9 \right)}} \approx 1.4649735\]

By substituting this value into the expression, we find that: $$\begin{aligned}3^{x} &= 3^{\frac{\log{\left(25 \right)}}{\log{\left(9 \right)}}}\\&= 3^{\frac{\log{\left(25 \right)}}{\log{\left(9 \right)}}}\end{aligned}$$