2-3+2-3+2-3.....?
You asked:
Find the sum of the sequence: \(2\), \(-3\), \(2\), \(-3\), \(2\), \(-3\),\(\ldots\)
MathBot Answer:
The infinite series \(\displaystyle \sum_{n=1}^{\infty} \left(- \frac{5 \left(-1\right)^{n}}{2} - \frac{1}{2}\right)\) diverges.
This is a c geometric sequence.
The nth term in this sequence is given by the formula:
Explicit Formula: $$a_n=- \frac{5 \left(-1\right)^{n}}{2} - \frac{1}{2}$$
Recursive Formula: $$a_n=- 5 \left(-1\right)^{n} + a_{n-1}, \text{where } a_1=2$$