2/(9(-0.1)^(4/3))
You asked:
Evaluate the expression: \(\frac{2}{9 {\left( -0.1 \right)}^{\frac{4}{3}}}\)
MathBot Answer:
\[\frac{2}{9 {\left( -0.1 \right)}^{\frac{4}{3}}} = \frac{20 \left(-1\right)^{\frac{2}{3}} \cdot \sqrt[3]{10}}{9}\]
\[\begin{aligned}\frac{2}{9 {\left( -0.1 \right)}^{\frac{4}{3}}}& = 2 \cdot \frac{1}{9 \cdot \left(- \frac{1}{10}\right)^{\frac{4}{3}}}\\& = 2 \cdot \frac{1}{9 \cdot \left(\frac{-1}{10}\right)^{\frac{4}{3}}}\\& = 2 \cdot \frac{1}{9 \cdot \left(- \frac{1}{10}\right)^{\frac{4}{3}}}\\& = 2 \cdot \frac{1}{9 \cdot - \frac{1}{100} \cdot \sqrt[3]{-1} \cdot 10^{\frac{2}{3}}}\\& = 2 \cdot \frac{1}{- \frac{9}{100} \cdot \sqrt[3]{-1} \cdot 10^{\frac{2}{3}}}\\& = \frac{20}{9} \cdot \left(-1\right)^{\frac{2}{3}} \cdot \sqrt[3]{10}\end{aligned}\]