2/(9(-0.1)^(4/3))

asked by guest
on Jan 23, 2025 at 5:32 pm



You asked:

Evaluate the expression: 29(0.1)43\frac{2}{9 {\left( -0.1 \right)}^{\frac{4}{3}}}

MathBot Answer:

29(0.1)43=20(1)231039\frac{2}{9 {\left( -0.1 \right)}^{\frac{4}{3}}} = \frac{20 \left(-1\right)^{\frac{2}{3}} \cdot \sqrt[3]{10}}{9}


29(0.1)43=219(110)43=219(110)43=219(110)43=2191100131023=219100131023=209(1)23103\begin{aligned}\frac{2}{9 {\left( -0.1 \right)}^{\frac{4}{3}}}&=2 \cdot \frac{1}{9 \cdot \left(- \frac{1}{10}\right)^{\frac{4}{3}}}\\&=2 \cdot \frac{1}{9 \cdot \left(\frac{-1}{10}\right)^{\frac{4}{3}}}\\&=2 \cdot \frac{1}{9 \cdot \left(- \frac{1}{10}\right)^{\frac{4}{3}}}\\&=2 \cdot \frac{1}{9 \cdot - \frac{1}{100} \cdot \sqrt[3]{-1} \cdot 10^{\frac{2}{3}}}\\&=2 \cdot \frac{1}{- \frac{9}{100} \cdot \sqrt[3]{-1} \cdot 10^{\frac{2}{3}}}\\&=\frac{20}{9} \cdot \left(-1\right)^{\frac{2}{3}} \cdot \sqrt[3]{10}\end{aligned}