2*x^3-46*x^2-1024*x+9486=0

asked by guest
on Apr 04, 2025 at 7:16 pm



You asked:

Solve the equation 2x346x21024x+9486=02 {x}^{3} - 46 {x}^{2} - 1024 x + 9486 = 0 for the variable xx.

MathBot Answer:

The 3 solutions to the equation are: x=233+22065cos(arctan(94347827712257)3)333.963286x=2065cos(arctan(94347827712257)3)6+2065re(1(123i2)225754+434782771i63)9+6195sin(arctan(94347827712257)3)6+233+i(6195cos(arctan(94347827712257)3)62065sin(arctan(94347827712257)3)6+2065im(1(123i2)225754+434782771i63)9)7.545222+5.010141ix=2065re(1(12+3i2)225754+434782771i63)92065cos(arctan(94347827712257)3)66195sin(arctan(94347827712257)3)6+233+i(2065im(1(12+3i2)225754+434782771i63)92065sin(arctan(94347827712257)3)6+6195cos(arctan(94347827712257)3)6)18.5085081.010141i\begin{aligned}x &= \frac{23}{3} + \frac{2 \sqrt{2065} \cos{\left(\frac{\arctan{\left(\frac{9 \sqrt{434782771}}{2257} \right)}}{3} \right)}}{3} \approx 33.963286\\x &= - \frac{\sqrt{2065} \cos{\left(\frac{\arctan{\left(\frac{9 \sqrt{434782771}}{2257} \right)}}{3} \right)}}{6} + \frac{2065 \operatorname{re}{\left(\frac{1}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{2257}{54} + \frac{\sqrt{434782771} i}{6}}}\right)}}{9} + \frac{\sqrt{6195} \sin{\left(\frac{\arctan{\left(\frac{9 \sqrt{434782771}}{2257} \right)}}{3} \right)}}{6} + \frac{23}{3} + i \left(- \frac{\sqrt{6195} \cos{\left(\frac{\arctan{\left(\frac{9 \sqrt{434782771}}{2257} \right)}}{3} \right)}}{6} - \frac{\sqrt{2065} \sin{\left(\frac{\arctan{\left(\frac{9 \sqrt{434782771}}{2257} \right)}}{3} \right)}}{6} + \frac{2065 \operatorname{im}{\left(\frac{1}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{2257}{54} + \frac{\sqrt{434782771} i}{6}}}\right)}}{9}\right) \approx 7.545222 + 5.0 \cdot 10^{-141} i\\x &= \frac{2065 \operatorname{re}{\left(\frac{1}{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{2257}{54} + \frac{\sqrt{434782771} i}{6}}}\right)}}{9} - \frac{\sqrt{2065} \cos{\left(\frac{\arctan{\left(\frac{9 \sqrt{434782771}}{2257} \right)}}{3} \right)}}{6} - \frac{\sqrt{6195} \sin{\left(\frac{\arctan{\left(\frac{9 \sqrt{434782771}}{2257} \right)}}{3} \right)}}{6} + \frac{23}{3} + i \left(\frac{2065 \operatorname{im}{\left(\frac{1}{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{2257}{54} + \frac{\sqrt{434782771} i}{6}}}\right)}}{9} - \frac{\sqrt{2065} \sin{\left(\frac{\arctan{\left(\frac{9 \sqrt{434782771}}{2257} \right)}}{3} \right)}}{6} + \frac{\sqrt{6195} \cos{\left(\frac{\arctan{\left(\frac{9 \sqrt{434782771}}{2257} \right)}}{3} \right)}}{6}\right) \approx -18.508508 -1.0 \cdot 10^{-141} i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.