an+n-(a+1)⋅(a-1)+n=
You asked:
Evaluate the expression: \(a n + n - \left(a + 1\right) \cdot \left(a - 1\right) + n\)
MathBot Answer:
Evaluated
\(\displaystyle a n + n - \left(a + 1\right) \cdot \left(a - 1\right) + n = a n + 2 n - \left(a - 1\right) \left(a + 1\right) \)
Expanded
\[a n + n - \left(a + 1\right) \cdot \left(a - 1\right) + n = - a^{2} + a n + 2 n + 1\]
Factored
\[a n + n - \left(a + 1\right) \cdot \left(a - 1\right) + n = - a^{2} + a n + 2 n + 1\]