The Maclaurin series for f(x)= $\frac{\sinh(x)}{\x}$
You asked:
Find the Maclaurin series of the function \(f\left( x \right) = \frac{\sinh\left( x \right)}{x}\).
MathBot Answer:
Series expansion:
\[1 + \frac{x^{2}}{6} + \frac{x^{4}}{120} + \frac{x^{6}}{5040} + \frac{x^{8}}{362880} + \frac{x^{10}}{39916800}+ \cdots\]
Series representation:
\[\frac{\sum_{n=0}^{\infty} \frac{x^{2 n + 1}}{\left(2 n + 1\right)!}}{x}\]