15 - [8 - 4 × (-16 + 4)^2] + 22 ÷ 2 × 5 - 13

asked by guest
on Jan 16, 2025 at 2:58 am



You asked:

Evaluate the expression: \(15 - \left(8 - 4 {\left( -16 + 4 \right)}^{2}\right) + \frac{22}{2} \cdot 5 - 13\)

MathBot Answer:

\[15 - \left(8 - 4 {\left( -16 + 4 \right)}^{2}\right) + \frac{22}{2} \cdot 5 - 13 = 625\]


\[\begin{aligned}15 - \left(8 - 4 {\left( -16 + 4 \right)}^{2}\right) + \frac{22}{2} \cdot 5 - 13& = 15 - \left(8 - 4 \cdot \left(-16 + 4\right)^{2}\right) + \frac{22}{2} \cdot 5 - 13\\& = 15 - \left(8 - 4 \cdot \left(-12\right)^{2}\right) + \frac{22}{2} \cdot 5 - 13\\& = 15 - \left(8 - 4 \cdot 144\right) + \frac{22}{2} \cdot 5 - 13\\& = 15 - \left(8 - 576\right) + \frac{22}{2} \cdot 5 - 13\\& = 15 - -568 + \frac{22}{2} \cdot 5 - 13\\& = 15 + 568 + \frac{22}{2} \cdot 5 - 13\\& = 15 + 568 + 55 - 13\\& = 583 + 55 - 13\\& = 638 - 13\\& = 625\end{aligned}\]