8,35^(1/4)

asked by guest
on Nov 19, 2024 at 12:56 pm



MathBot Answer:

The sum of \(8\) and \({35}^{\frac{1}{4}}\) is:

\[\begin{aligned}&=\left(8\right) + \left({35}^{\frac{1}{4}}\right) \\\\ &= 35^{\frac{1}{4}} + 8 \\\\ &= \sqrt[4]{35} + 8 \\\\\end{aligned}\]


The difference of \(8\) and \({35}^{\frac{1}{4}}\) is:

\[\begin{aligned}&=\left(8\right) - \left({35}^{\frac{1}{4}}\right) \\\\ &= 8 - 35^{\frac{1}{4}} \\\\ &= 8 - \sqrt[4]{35} \\\\\end{aligned}\]


The product of \(8\) and \({35}^{\frac{1}{4}}\) is:

\[\begin{aligned}&=\left(8\right) \cdot \left({35}^{\frac{1}{4}}\right) \\\\ &= 8 \cdot 35^{\frac{1}{4}} \\\\ &= 8 \cdot \sqrt[4]{35} \\\\\end{aligned}\]


The quotient of \(8\) and \({35}^{\frac{1}{4}}\) is:

\[\begin{aligned}&= \frac{\left(8\right)}{\left({35}^{\frac{1}{4}}\right)} \\\\ &= \frac{8 \cdot 35^{\frac{3}{4}}}{35} \\\\\end{aligned}\]