: nPr = n-1Pr+r.n-1Pr-1

asked by guest
on Jan 15, 2025 at 1:50 am



MathBot Answer:

1Pr+n1=n1n+rn+1- 1 P r + n - 1 = n - 1 - \frac{n + r}{n + 1}


Pnr=Pr+n+rP n r = - P r + n + rSolve for PP: P=n+rr(n+1)P = \frac{n + r}{r \left(n + 1\right)}Substitute PP into the given expression: 1Pr+n1=nr(n+r)r(n+1)11Pr+n1=n1n+rn+1\begin{aligned}- 1 P r + n - 1 &= n - \frac{r \left(n + r\right)}{r \left(n + 1\right)} - 1 \\ - 1 P r + n - 1 &= n - 1 - \frac{n + r}{n + 1}\end{aligned}