(8x^2+10x^3-33)(2+4x)

asked by guest
on Apr 02, 2025 at 6:49 pm



You asked:

Evaluate the expression: (8x2+10x333)(2+4x)\left(8 {x}^{2} + 10 {x}^{3} - 33\right) \left(2 + 4 x\right)

MathBot Answer:

Evaluated



(8x2+10x333)(2+4x)=(4x+2)(10x3+8x233)\displaystyle \left(8 {x}^{2} + 10 {x}^{3} - 33\right) \left(2 + 4 x\right) = \left(4 x + 2\right) \left(10 x^{3} + 8 x^{2} - 33\right)


Expanded

(8x2+10x333)(2+4x)=40x4+52x3+16x2132x66\left(8 {x}^{2} + 10 {x}^{3} - 33\right) \left(2 + 4 x\right) = 40 x^{4} + 52 x^{3} + 16 x^{2} - 132 x - 66


Factored

(8x2+10x333)(2+4x)=2(2x+1)(10x3+8x233)\left(8 {x}^{2} + 10 {x}^{3} - 33\right) \left(2 + 4 x\right) = 2 \cdot \left(2 x + 1\right) \left(10 x^{3} + 8 x^{2} - 33\right)