∫( 1/( sqrt(x+3)- sqrt(x-4)) )dx
asked by guest on Dec 28, 2024 at 8:30 am
You asked:
MathBot Answer:
∫1x+3−x−4dx=−2−3−4+x+33+x+4x−3−4+x+33+x−2−4+x3+x−3−4+x+33+x+C\int{\frac{1}{\sqrt{x + 3} - \sqrt{x - 4}}}dx = - \frac{2}{- 3 \sqrt{-4 + x} + 3 \sqrt{3 + x}} + \frac{4 x}{- 3 \sqrt{-4 + x} + 3 \sqrt{3 + x}} - \frac{2 \sqrt{-4 + x} \sqrt{3 + x}}{- 3 \sqrt{-4 + x} + 3 \sqrt{3 + x}} + C∫x+3−x−41dx=−−3−4+x+33+x2+−3−4+x+33+x4x−−3−4+x+33+x2−4+x3+x+C