x+y=10

y+z=20

x+z=24

x+y+z=

asked by guest
on Jan 16, 2025 at 12:14 am



You asked:

Given the following equations: \[\begin{aligned}x + y &= 10\\ y + z &= 20\\ x + z &= 24\end{aligned}\] Evaluate \(x + y + z\).

MathBot Answer:

The system of linear equations has exactly one solution.

The substitutions are \( x = 7 \), \( y = 3 \), \( z = 17 \).

\[x + y + z = 27\]


Begin by writing the augmented matrix of the system of equations. $$\begin{bmatrix}1 & 1 & 0 &\bigm |& 10\\0 & 1 & 1 &\bigm |& 20\\1 & 0 & 1 &\bigm |& 24\end{bmatrix}$$

Then use a series of elementary row operations to convert the matrix into reduced-row echelon form. The three elementary row operations are:

  1. Swap the positions of any two rows.

  2. Multiply any row by a nonzero scalar.

  3. Multiply a row by a nonzero scalar and add it to any other row.


First, switch the rows in the matrix such that the row with the leftmost non-zero entry with the greatest magnitude is at the top.

$$\begin{bmatrix}1 & 1 & 0 &\bigm |& 10\\0 & 1 & 1 &\bigm |& 20\\1 & 0 & 1 &\bigm |& 24\end{bmatrix}$$

The leading term of row \(1\) is already \(1\) so this row does not need to be multiplied by a scalar.

$$\begin{bmatrix}1 & 1 & 0 &\bigm |& 10\\0 & 1 & 1 &\bigm |& 20\\1 & 0 & 1 &\bigm |& 24\end{bmatrix}$$

Multiply row \(1\) by scalar \(-1\) and add it to row \(3\).

$$\begin{bmatrix}1 & 1 & 0 &\bigm |& 10\\0 & 1 & 1 &\bigm |& 20\\0 & -1 & 1 &\bigm |& 14\end{bmatrix}$$

Switch the rows in the matrix such that the row with the next leftmost non-zero entry with the next greatest magnitude is the next row from the top.

$$\begin{bmatrix}1 & 1 & 0 &\bigm |& 10\\0 & 1 & 1 &\bigm |& 20\\0 & -1 & 1 &\bigm |& 14\end{bmatrix}$$

The leading term of row \(2\) is already \(1\) so this row does not need to be multiplied by a scalar.

$$\begin{bmatrix}1 & 1 & 0 &\bigm |& 10\\0 & 1 & 1 &\bigm |& 20\\0 & -1 & 1 &\bigm |& 14\end{bmatrix}$$

Multiply row \(2\) by scalar \(-1\) and add it to row \(1\).

$$\begin{bmatrix}1 & 0 & -1 &\bigm |& -10\\0 & 1 & 1 &\bigm |& 20\\0 & -1 & 1 &\bigm |& 14\end{bmatrix}$$

Multiply row \(2\) by scalar \(1\) and add it to row \(3\).

$$\begin{bmatrix}1 & 0 & -1 &\bigm |& -10\\0 & 1 & 1 &\bigm |& 20\\0 & 0 & 2 &\bigm |& 34\end{bmatrix}$$

Multiply row \(3\) by scalar \(\frac{1}{2}\) to make the leading term \(1\).

$$\begin{bmatrix}1 & 0 & -1 &\bigm |& -10\\0 & 1 & 1 &\bigm |& 20\\0 & 0 & 1 &\bigm |& 17\end{bmatrix}$$

Multiply row \(3\) by scalar \(1\) and add it to row \(1\).

$$\begin{bmatrix}1 & 0 & 0 &\bigm |& 7\\0 & 1 & 1 &\bigm |& 20\\0 & 0 & 1 &\bigm |& 17\end{bmatrix}$$

Multiply row \(3\) by scalar \(-1\) and add it to row \(2\).

$$\begin{bmatrix}1 & 0 & 0 &\bigm |& 7\\0 & 1 & 0 &\bigm |& 3\\0 & 0 & 1 &\bigm |& 17\end{bmatrix}$$

Once the matrix is in reduced-row echelon form, convert the matrix back into linear equations to find the solution. $$\begin{aligned}1 \cdot x+ 0 \cdot y+ 0 \cdot z = 7 \\ x = 7\end{aligned}$$$$\begin{aligned}0 \cdot x+ 1 \cdot y+ 0 \cdot z = 3 \\ y = 3\end{aligned}$$$$\begin{aligned}0 \cdot x+ 0 \cdot y+ 1 \cdot z = 17 \\ z = 17\end{aligned}$$

By substituting these values into the expression, we find that:$$\begin{aligned} x + y + z &= 3 + 7 + 17\\ &=27\end{aligned}$$