$10^{-1+b+c}$ - $10^{-1-b-c}$
You asked:
Evaluate the expression: \({10}^{-1 + b + c} - {10}^{-1 - b - c}\)
MathBot Answer:
\[{10}^{-1 + b + c} - {10}^{-1 - b - c} = - 10^{- b - c - 1} + 10^{b + c - 1}\]
Expanded
\[{10}^{-1 + b + c} - {10}^{-1 - b - c} = \frac{10^{b} 10^{c}}{10} - \frac{10^{- b} 10^{- c}}{10}\]
Factored
\[{10}^{-1 + b + c} - {10}^{-1 - b - c} = - \frac{- 10^{b} 10^{c} + 10^{- b} 10^{- c}}{10}\]