$10^{-1+b+c}$ - $10^{-1-b-c}$

asked by guest
on Nov 28, 2024 at 11:59 am



You asked:

Evaluate the expression: \({10}^{-1 + b + c} - {10}^{-1 - b - c}\)

MathBot Answer:

\[{10}^{-1 + b + c} - {10}^{-1 - b - c} = - 10^{- b - c - 1} + 10^{b + c - 1}\]


Expanded

\[{10}^{-1 + b + c} - {10}^{-1 - b - c} = \frac{10^{b} 10^{c}}{10} - \frac{10^{- b} 10^{- c}}{10}\]


Factored

\[{10}^{-1 + b + c} - {10}^{-1 - b - c} = - \frac{- 10^{b} 10^{c} + 10^{- b} 10^{- c}}{10}\]