simplify log √ 27 + log 64 log √ 1000/ log 480

asked by guest
on Nov 22, 2024 at 8:37 pm



You asked:

Simplify the expression: log(27)+log(64)log(1000)log(480)\log\left( \sqrt{27} \right) + \frac{\log\left( 64 \right) \log\left( \sqrt{1000} \right)}{\log\left( 480 \right)}

MathBot Answer:

Simplified:

log(27)+log(64)log(1000)log(480)=log(33)+log(64)log(1010)log(480) \log\left( \sqrt{27} \right) + \frac{\log\left( 64 \right) \log\left( \sqrt{1000} \right)}{\log\left( 480 \right)} = \log{\left(3 \sqrt{3} \right)} + \frac{\log{\left(64 \right)} \log{\left(10 \sqrt{10} \right)}}{\log{\left(480 \right)}}


log(27)+log(64)log(1000)log(480)=log(64)log(1000)log(480)+log(33)=log(64)log(1010)log(480)+log(33)=log(33)+9log(2)log(10)log(480)=log(480)log(33)log(480)+9log(2)log(10)log(480)=log((10log(64)480log(3))32log(480))\begin{aligned}\log{\left(\sqrt{27} \right)} + \frac{\log{\left(64 \right)} \log{\left(\sqrt{1000} \right)}}{\log{\left(480 \right)}}&=\frac{\log{\left(64 \right)} \log{\left(\sqrt{1000} \right)}}{\log{\left(480 \right)}} + \log{\left(3 \sqrt{3} \right)}\\&=\frac{\log{\left(64 \right)} \log{\left(10 \sqrt{10} \right)}}{\log{\left(480 \right)}} + \log{\left(3 \sqrt{3} \right)}\\&=\log{\left(3 \sqrt{3} \right)} + \frac{9 \log{\left(2 \right)} \log{\left(10 \right)}}{\log{\left(480 \right)}}\\&=\frac{\log{\left(480 \right)} \log{\left(3 \sqrt{3} \right)}}{\log{\left(480 \right)}} + \frac{9 \log{\left(2 \right)} \log{\left(10 \right)}}{\log{\left(480 \right)}}\\&=\log{\left(\left(10^{\log{\left(64 \right)}} 480^{\log{\left(3 \right)}}\right)^{\frac{3}{2 \log{\left(480 \right)}}} \right)}\end{aligned}


Factored:

log(27)+log(64)log(1000)log(480)=3(log(3)log(480)+6log(2)log(10))2log(480) \log\left( \sqrt{27} \right) + \frac{\log\left( 64 \right) \log\left( \sqrt{1000} \right)}{\log\left( 480 \right)} = \frac{3 \left(\log{\left(3 \right)} \log{\left(480 \right)} + 6 \log{\left(2 \right)} \log{\left(10 \right)}\right)}{2 \log{\left(480 \right)}}