5.7 + 10.15 + 12.16 + 10.22 + 24.23 + 31.36

asked by guest
on Nov 25, 2024 at 6:34 am



You asked:

Evaluate the expression: \(5.7 + 10.15 + 12.16 + 10.22 + 24.23 + 31.36\)

MathBot Answer:

\[ 5.7 + 10.15 + 12.16 + 10.22 + 24.23 + 31.36 = \frac{4691}{50} = 93.82 \]


The sum can be computed by rewriting each term over a common denominator, where the least common denominator of \(\frac{5}{1}\), \(\frac{7}{10}\), \(\frac{10}{1}\), \(\frac{15}{100}\), \(\frac{12}{1}\), \(\frac{16}{100}\), \(\frac{10}{1}\), \(\frac{22}{100}\), \(\frac{24}{1}\), \(\frac{23}{100}\), \(\frac{31}{1}\), and \(\frac{36}{100}\) is \(100\). \[ \begin{aligned} 5.7 + 10.15 + 12.16 + 10.22 + 24.23 + 31.36 &= \frac{5 \cdot 100}{1 \cdot 100} + \frac{7 \cdot 10}{10 \cdot 10} + \frac{10 \cdot 100}{1 \cdot 100} + \frac{15 \cdot 1}{100 \cdot 1} + \frac{12 \cdot 100}{1 \cdot 100} + \frac{16 \cdot 1}{100 \cdot 1} + \frac{10 \cdot 100}{1 \cdot 100} + \frac{22 \cdot 1}{100 \cdot 1} + \frac{24 \cdot 100}{1 \cdot 100} + \frac{23 \cdot 1}{100 \cdot 1} + \frac{31 \cdot 100}{1 \cdot 100} + \frac{36 \cdot 1}{100 \cdot 1} \\ &= \frac{500 + 70 + 1000 + 15 + 1200 + 16 + 1000 + 22 + 2400 + 23 + 3100 + 36}{100} \\ &= \frac{9382}{100} \\&= \frac{4691}{50} \end{aligned} \]