(25/9\sqrt{25/9}25/9 + 64/25\sqrt{64/25}64/25 - 121/225\sqrt{121/225}121/225)*( 49/36\sqrt{49/36}49/36 - 25/36\sqrt{25/36}25/36 )
asked by guest on Sep 19, 2024 at 6:06 pm
You asked:
MathBot Answer:
(259+6425−121225)(4936−2536)=3845=0.84‾\left(\sqrt{\frac{25}{9}} + \sqrt{\frac{64}{25}} - \sqrt{\frac{121}{225}}\right) \left(\sqrt{\frac{49}{36}} - \sqrt{\frac{25}{36}}\right) = \frac{38}{45} = 0.8\overline{4}(925+2564−225121)(3649−3625)=4538=0.84
(259+6425−121225)(4936−2536)=(259+6425−121225)⋅(4936−2536)=(53+6425−121225)⋅(4936−2536)=(53+85−121225)⋅(4936−2536)=(53+85−1115)⋅(4936−2536)=(4915−1115)⋅(4936−2536)=3815⋅(4936−2536)=3815⋅(76−2536)=3815⋅(76−56)=3815⋅13=3845\begin{aligned}\left(\sqrt{\frac{25}{9}} + \sqrt{\frac{64}{25}} - \sqrt{\frac{121}{225}}\right) \left(\sqrt{\frac{49}{36}} - \sqrt{\frac{25}{36}}\right)&=\left(\sqrt{\frac{25}{9}} + \sqrt{\frac{64}{25}} - \sqrt{\frac{121}{225}}\right) \cdot \left(\sqrt{\frac{49}{36}} - \sqrt{\frac{25}{36}}\right)\\&=\left(\frac{5}{3} + \sqrt{\frac{64}{25}} - \sqrt{\frac{121}{225}}\right) \cdot \left(\sqrt{\frac{49}{36}} - \sqrt{\frac{25}{36}}\right)\\&=\left(\frac{5}{3} + \frac{8}{5} - \sqrt{\frac{121}{225}}\right) \cdot \left(\sqrt{\frac{49}{36}} - \sqrt{\frac{25}{36}}\right)\\&=\left(\frac{5}{3} + \frac{8}{5} - \frac{11}{15}\right) \cdot \left(\sqrt{\frac{49}{36}} - \sqrt{\frac{25}{36}}\right)\\&=\left(\frac{49}{15} - \frac{11}{15}\right) \cdot \left(\sqrt{\frac{49}{36}} - \sqrt{\frac{25}{36}}\right)\\&=\frac{38}{15} \cdot \left(\sqrt{\frac{49}{36}} - \sqrt{\frac{25}{36}}\right)\\&=\frac{38}{15} \cdot \left(\frac{7}{6} - \sqrt{\frac{25}{36}}\right)\\&=\frac{38}{15} \cdot \left(\frac{7}{6} - \frac{5}{6}\right)\\&=\frac{38}{15} \cdot \frac{1}{3}\\&=\frac{38}{45}\end{aligned}(925+2564−225121)(3649−3625)=(925+2564−225121)⋅(3649−3625)=(35+2564−225121)⋅(3649−3625)=(35+58−225121)⋅(3649−3625)=(35+58−1511)⋅(3649−3625)=(1549−1511)⋅(3649−3625)=1538⋅(3649−3625)=1538⋅(67−3625)=1538⋅(67−65)=1538⋅31=4538