\dfrac{ { (25) }^{ -x } { (15) }^{ x+1 } }{ { (3) }^{ x } { (5) }^{ -x } }

asked by guest
on Nov 14, 2024 at 1:53 am



You asked:

Evaluate the expression: 25x15x+13x5x\frac{{25}^{-x} \cdot {15}^{x + 1}}{{3}^{x} \cdot {5}^{-x}}

MathBot Answer:

Evaluated



25x15x+13x5x=15x+15x75x\displaystyle \frac{{25}^{-x} \cdot {15}^{x + 1}}{{3}^{x} \cdot {5}^{-x}} = 15^{x + 1} \cdot 5^{x} 75^{- x}


Expanded

25x15x+13x5x=15\frac{{25}^{-x} \cdot {15}^{x + 1}}{{3}^{x} \cdot {5}^{-x}} = 15