\dfrac{ { (25) }^{ -x } { (15) }^{ x+1 } }{ { (3) }^{ x } { (5) }^{ -x } }

asked by guest
on Nov 14, 2024 at 1:53 am



You asked:

Evaluate the expression: \(\frac{{25}^{-x} \cdot {15}^{x + 1}}{{3}^{x} \cdot {5}^{-x}}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{{25}^{-x} \cdot {15}^{x + 1}}{{3}^{x} \cdot {5}^{-x}} = 15^{x + 1} \cdot 5^{x} 75^{- x} \)


Expanded

\[\frac{{25}^{-x} \cdot {15}^{x + 1}}{{3}^{x} \cdot {5}^{-x}} = 15\]