\dfrac{ { (25) }^{ -x } { (15) }^{ x+1 } }{ { (3) }^{ x } { (5) }^{ -x } }
You asked:
Evaluate the expression: \(\frac{{25}^{-x} \cdot {15}^{x + 1}}{{3}^{x} \cdot {5}^{-x}}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{{25}^{-x} \cdot {15}^{x + 1}}{{3}^{x} \cdot {5}^{-x}} = 15^{x + 1} \cdot 5^{x} 75^{- x} \)
Expanded
\[\frac{{25}^{-x} \cdot {15}^{x + 1}}{{3}^{x} \cdot {5}^{-x}} = 15\]