Is (7, 2) a solution to this system of inequalities?
4x − 16y ≥ –4
8x − 8y > 8
asked by guest on Mar 29, 2025 at 7:04 pm
MathBot Answer:
True, (7, 2)\left( 7, \ 2\right)(7, 2) is a solution of 4x−16y≥−4 and 8x−8y>84 x - 16 y \geq -4 \text{ and } 8 x - 8 y > 84x−16y≥−4 and 8x−8y>8.
4x−16y≥−44(7)−16(2)≥?−4−4≥−4\begin{gathered}4 x - 16 y \geq -4\\4 \left(7\right) - 16 \left(2\right) \stackrel{?}{\ge} -4\\-4 \ge -4\end{gathered}4x−16y≥−44(7)−16(2)≥?−4−4≥−48x−8y>88(7)−8(2)>?840>8\begin{gathered}8 x - 8 y > 8\\8 \left(7\right) - 8 \left(2\right) \stackrel{?}{\gt} 8\\40 \gt 8\end{gathered}8x−8y>88(7)−8(2)>?840>8