\lim_{x \to (0)} \frac{1}{\sqrt[3]{x}} - 3

asked by guest
on Nov 26, 2024 at 11:51 am



You asked:

Evaluate the expression: \(\lim_{x \to 0}{\frac{1}{\sqrt[3]{x}} - 3}\)

MathBot Answer:

The two-sided limit \(\lim_{x \to 0}{\frac{1}{\sqrt[3]{x}} - 3}\) does not exist because the directional limits from the right and the left result in different values.


Right limit:
\(\displaystyle\lim_{x \to 0^+}\left(-3 + \frac{1}{\sqrt[3]{x}}\right) = \infty\)


Left limit:
\(\displaystyle\lim_{x \to 0^-}\left(-3 + \frac{1}{\sqrt[3]{x}}\right) = - \infty \left(-1\right)^{\frac{2}{3}}\)