S=ut+1/2(at^2) make t subject of formula

asked by guest
on Jan 21, 2025 at 3:23 am



You asked:

Solve the equation S=ut+12at2S = u t + \frac{1}{2 a {t}^{2}} for the unknown tt.

MathBot Answer:

t=S23u2S3u3+4S6u6+(2S3u3+272au)22+274au3+S3uS3u3+4S6u6+(2S3u3+272au)22+274au33t=S23u2(123i2)S3u3+4S6u6+(2S3u3+272au)22+274au3+S3u(123i2)S3u3+4S6u6+(2S3u3+272au)22+274au33t=S23u2(12+3i2)S3u3+4S6u6+(2S3u3+272au)22+274au3+S3u(12+3i2)S3u3+4S6u6+(2S3u3+272au)22+274au33\begin{aligned}t &= - \frac{S^{2}}{3 u^{2} \sqrt[3]{- \frac{S^{3}}{u^{3}} + \frac{\sqrt{- \frac{4 S^{6}}{u^{6}} + \left(- \frac{2 S^{3}}{u^{3}} + \frac{27}{2 a u}\right)^{2}}}{2} + \frac{27}{4 a u}}} + \frac{S}{3 u} - \frac{\sqrt[3]{- \frac{S^{3}}{u^{3}} + \frac{\sqrt{- \frac{4 S^{6}}{u^{6}} + \left(- \frac{2 S^{3}}{u^{3}} + \frac{27}{2 a u}\right)^{2}}}{2} + \frac{27}{4 a u}}}{3}\\t &= - \frac{S^{2}}{3 u^{2} \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{- \frac{S^{3}}{u^{3}} + \frac{\sqrt{- \frac{4 S^{6}}{u^{6}} + \left(- \frac{2 S^{3}}{u^{3}} + \frac{27}{2 a u}\right)^{2}}}{2} + \frac{27}{4 a u}}} + \frac{S}{3 u} - \frac{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{- \frac{S^{3}}{u^{3}} + \frac{\sqrt{- \frac{4 S^{6}}{u^{6}} + \left(- \frac{2 S^{3}}{u^{3}} + \frac{27}{2 a u}\right)^{2}}}{2} + \frac{27}{4 a u}}}{3}\\t &= - \frac{S^{2}}{3 u^{2} \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{- \frac{S^{3}}{u^{3}} + \frac{\sqrt{- \frac{4 S^{6}}{u^{6}} + \left(- \frac{2 S^{3}}{u^{3}} + \frac{27}{2 a u}\right)^{2}}}{2} + \frac{27}{4 a u}}} + \frac{S}{3 u} - \frac{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{- \frac{S^{3}}{u^{3}} + \frac{\sqrt{- \frac{4 S^{6}}{u^{6}} + \left(- \frac{2 S^{3}}{u^{3}} + \frac{27}{2 a u}\right)^{2}}}{2} + \frac{27}{4 a u}}}{3}\end{aligned} and t0t \neq 0