\frac{1}{x+1}+x=\frac{\left(x^{2}-x-1\right)}{x^{2}-1}\cdot\frac{2}{x-1}

asked by guest
on Nov 23, 2024 at 1:27 pm



You asked:

Solve the equation 1x+1+x=x2x1x212x1\frac{1}{x + 1} + x = \frac{{x}^{2} - x - 1}{{x}^{2} - 1} \cdot \frac{2}{x - 1} for the variable xx.

MathBot Answer:


The complex solutions are: {14i196+4318253216+1722i723141912+4318253216+1722i723+2253216+1722i723+2253216+1722i7232+1912+4318253216+1722i723+2253216+1722i7232,14i196+4318253216+1722i723+141912+4318253216+1722i723+2253216+1722i723+2253216+1722i72321912+4318253216+1722i723+2253216+1722i7232,141912+4318253216+1722i723+2253216+1722i7232+i196+4318253216+1722i723+141912+4318253216+1722i723+2253216+1722i723+2253216+1722i7232,14+1912+4318253216+1722i723+2253216+1722i7232+i196+4318253216+1722i723141912+4318253216+1722i723+2253216+1722i723+2253216+1722i7232}{1}\left\{\frac{1}{4} - \frac{i \sqrt{- \frac{19}{6} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} - \frac{1}{4 \sqrt{\frac{19}{12} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}}{2} + \frac{\sqrt{\frac{19}{12} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}}{2}, \frac{1}{4} - \frac{i \sqrt{- \frac{19}{6} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} + \frac{1}{4 \sqrt{\frac{19}{12} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}}{2} - \frac{\sqrt{\frac{19}{12} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}}{2}, \frac{1}{4} - \frac{\sqrt{\frac{19}{12} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}}{2} + \frac{i \sqrt{- \frac{19}{6} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} + \frac{1}{4 \sqrt{\frac{19}{12} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}}{2}, \frac{1}{4} + \frac{\sqrt{\frac{19}{12} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}}{2} + \frac{i \sqrt{- \frac{19}{6} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} - \frac{1}{4 \sqrt{\frac{19}{12} + \frac{43}{18 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}} + 2 \sqrt[3]{\frac{253}{216} + \frac{\sqrt{1722} i}{72}}}}{2}\right\} \setminus \left\{1\right\}


ii is the imaginary unit, defined as i2=1i^2 = -1.