(x+1)(x+2)(x+3)(x+4)-48
You asked:
Evaluate the expression: \(\left(x + 1\right) \left(x + 2\right) \left(x + 3\right) \left(x + 4\right) - 48\)
MathBot Answer:
Evaluated
\(\displaystyle \left(x + 1\right) \left(x + 2\right) \left(x + 3\right) \left(x + 4\right) - 48 = \left(x + 1\right) \left(x + 2\right) \left(x + 3\right) \left(x + 4\right) - 48 \)
Expanded
\[\left(x + 1\right) \left(x + 2\right) \left(x + 3\right) \left(x + 4\right) - 48 = x^{4} + 10 x^{3} + 35 x^{2} + 50 x - 24\]
Factored
\[\left(x + 1\right) \left(x + 2\right) \left(x + 3\right) \left(x + 4\right) - 48 = \left(x^{2} + 5 x - 2\right) \left(x^{2} + 5 x + 12\right)\]