integration of dx/(((cosx)^2 +4sinx-5)cosx)

asked by guest
on Jan 25, 2025 at 9:55 pm



You asked:

Evaluate the integral: \(\int{\frac{1}{\left({\cos\left( x \right)}^{2} + 4 \sin\left( x \right) - 5\right) \cdot \cos\left( x \right)}}dx\)

MathBot Answer:

Antiderivative

\[\int{\frac{1}{\left({\cos\left( x \right)}^{2} + 4 \sin\left( x \right) - 5\right) \cdot \cos\left( x \right)}}dx = - \frac{8 \log{\left(1 + \tan^{2}{\left(\frac{x}{2} \right)} - \tan{\left(\frac{x}{2} \right)} \right)}}{18 - 18 \tan{\left(\frac{x}{2} \right)} + 18 \tan^{2}{\left(\frac{x}{2} \right)}} - \frac{2 \log{\left(1 + \tan{\left(\frac{x}{2} \right)} \right)}}{18 - 18 \tan{\left(\frac{x}{2} \right)} + 18 \tan^{2}{\left(\frac{x}{2} \right)}} + \frac{3 \tan{\left(\frac{x}{2} \right)}}{18 - 18 \tan{\left(\frac{x}{2} \right)} + 18 \tan^{2}{\left(\frac{x}{2} \right)}} + \frac{18 \log{\left(-1 + \tan{\left(\frac{x}{2} \right)} \right)}}{18 - 18 \tan{\left(\frac{x}{2} \right)} + 18 \tan^{2}{\left(\frac{x}{2} \right)}} - \frac{18 \log{\left(-1 + \tan{\left(\frac{x}{2} \right)} \right)} \tan{\left(\frac{x}{2} \right)}}{18 - 18 \tan{\left(\frac{x}{2} \right)} + 18 \tan^{2}{\left(\frac{x}{2} \right)}} - \frac{8 \tan^{2}{\left(\frac{x}{2} \right)} \log{\left(1 + \tan^{2}{\left(\frac{x}{2} \right)} - \tan{\left(\frac{x}{2} \right)} \right)}}{18 - 18 \tan{\left(\frac{x}{2} \right)} + 18 \tan^{2}{\left(\frac{x}{2} \right)}} - \frac{2 \tan^{2}{\left(\frac{x}{2} \right)} \log{\left(1 + \tan{\left(\frac{x}{2} \right)} \right)}}{18 - 18 \tan{\left(\frac{x}{2} \right)} + 18 \tan^{2}{\left(\frac{x}{2} \right)}} + \frac{2 \log{\left(1 + \tan{\left(\frac{x}{2} \right)} \right)} \tan{\left(\frac{x}{2} \right)}}{18 - 18 \tan{\left(\frac{x}{2} \right)} + 18 \tan^{2}{\left(\frac{x}{2} \right)}} + \frac{8 \log{\left(1 + \tan^{2}{\left(\frac{x}{2} \right)} - \tan{\left(\frac{x}{2} \right)} \right)} \tan{\left(\frac{x}{2} \right)}}{18 - 18 \tan{\left(\frac{x}{2} \right)} + 18 \tan^{2}{\left(\frac{x}{2} \right)}} + \frac{18 \tan^{2}{\left(\frac{x}{2} \right)} \log{\left(-1 + \tan{\left(\frac{x}{2} \right)} \right)}}{18 - 18 \tan{\left(\frac{x}{2} \right)} + 18 \tan^{2}{\left(\frac{x}{2} \right)}} + C\]