2x$x^{2}$+$x$+$\frac14$=30+$\frac14$
You asked:
MathBot Answer:
The 3 solutions to the equation are: \[\begin{aligned}x &= \sqrt[3]{\frac{15}{2} + \frac{\sqrt{72906}}{36}} - \frac{1}{6 \sqrt[3]{\frac{15}{2} + \frac{\sqrt{72906}}{36}}} \approx 2.3986494\\x &= - \frac{\sqrt[3]{\frac{15}{2} + \frac{\sqrt{72906}}{36}}}{2} + \frac{1}{12 \sqrt[3]{\frac{15}{2} + \frac{\sqrt{72906}}{36}}} + i \left(\frac{\sqrt{3}}{12 \sqrt[3]{\frac{15}{2} + \frac{\sqrt{72906}}{36}}} + \frac{\sqrt{3} \sqrt[3]{\frac{15}{2} + \frac{\sqrt{72906}}{36}}}{2}\right) \approx -1.1993247 + 2.1943426 i\\x &= - \frac{\sqrt[3]{\frac{15}{2} + \frac{\sqrt{72906}}{36}}}{2} + \frac{1}{12 \sqrt[3]{\frac{15}{2} + \frac{\sqrt{72906}}{36}}} + i \left(- \frac{\sqrt{3} \sqrt[3]{\frac{15}{2} + \frac{\sqrt{72906}}{36}}}{2} - \frac{\sqrt{3}}{12 \sqrt[3]{\frac{15}{2} + \frac{\sqrt{72906}}{36}}}\right) \approx -1.1993247 -2.1943426 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).