if f(x)=ln(2x + 3), solve for f(x + h) - f(x - h)
asked by guest on Jan 09, 2025 at 10:15 pm
MathBot Answer:
f(x+h)−f(x−h)=−log(−2h+2x+3)+log(2h+2x+3)\begin{aligned}f\left( x + h \right) - f\left( x - h \right)&=- \log{\left(- 2 h + 2 x + 3 \right)} + \log{\left(2 h + 2 x + 3 \right)}\end{aligned}f(x+h)−f(x−h)=−log(−2h+2x+3)+log(2h+2x+3)
f(x+h)−f(x−h)=−log(3+2(−h+x))+log(3+2(h+x))f(x+h)−f(x−h)=−log(−2h+2x+3)+log(2h+2x+3)\begin{aligned}f\left( x + h \right) - f\left( x - h \right)&=- \log{\left(3 + 2 \left(- h + x\right) \right)} + \log{\left(3 + 2 \left(h + x\right) \right)}\\f\left( x + h \right) - f\left( x - h \right)&=- \log{\left(- 2 h + 2 x + 3 \right)} + \log{\left(2 h + 2 x + 3 \right)}\\\end{aligned}f(x+h)−f(x−h)f(x+h)−f(x−h)=−log(3+2(−h+x))+log(3+2(h+x))=−log(−2h+2x+3)+log(2h+2x+3)