[ (22n2^{2n} -3) (22n22^{2n-2} )( 3n3^{n} -2)( 3n23^{n-2} )] / 3n43^{n-4} ( 4n+34^{n+3} - 22n2^{2n} )

asked by guest
on Nov 19, 2024 at 7:14 am



You asked:

Evaluate the expression: (22n3)22n2(3n2)3n23n4(4n+322n)\frac{\left({2}^{2 n} - 3\right) \cdot {2}^{2 n - 2} \left({3}^{n} - 2\right) \cdot {3}^{n - 2}}{{3}^{n - 4} \left({4}^{n + 3} - {2}^{2 n}\right)}

MathBot Answer:

Evaluated



(22n3)22n2(3n2)3n23n4(4n+322n)=22n234n3n2(22n3)(3n2)22n+4n+3\displaystyle \frac{\left({2}^{2 n} - 3\right) \cdot {2}^{2 n - 2} \left({3}^{n} - 2\right) \cdot {3}^{n - 2}}{{3}^{n - 4} \left({4}^{n + 3} - {2}^{2 n}\right)} = \frac{2^{2 n - 2} \cdot 3^{4 - n} 3^{n - 2} \cdot \left(2^{2 n} - 3\right) \left(3^{n} - 2\right)}{- 2^{2 n} + 4^{n + 3}}


Expanded

(22n3)22n2(3n2)3n23n4(4n+322n)=924n3n422n+2564n1824n422n+2564n2722n3n422n+2564n+5422n422n+2564n\frac{\left({2}^{2 n} - 3\right) \cdot {2}^{2 n - 2} \left({3}^{n} - 2\right) \cdot {3}^{n - 2}}{{3}^{n - 4} \left({4}^{n + 3} - {2}^{2 n}\right)} = \frac{9 \cdot 2^{4 n} 3^{n}}{- 4 \cdot 2^{2 n} + 256 \cdot 4^{n}} - \frac{18 \cdot 2^{4 n}}{- 4 \cdot 2^{2 n} + 256 \cdot 4^{n}} - \frac{27 \cdot 2^{2 n} 3^{n}}{- 4 \cdot 2^{2 n} + 256 \cdot 4^{n}} + \frac{54 \cdot 2^{2 n}}{- 4 \cdot 2^{2 n} + 256 \cdot 4^{n}}


Factored

(22n3)22n2(3n2)3n23n4(4n+322n)=22n234n3n2(22n3)(3n2)22n644n\frac{\left({2}^{2 n} - 3\right) \cdot {2}^{2 n - 2} \left({3}^{n} - 2\right) \cdot {3}^{n - 2}}{{3}^{n - 4} \left({4}^{n + 3} - {2}^{2 n}\right)} = - \frac{2^{2 n - 2} \cdot 3^{4 - n} 3^{n - 2} \cdot \left(2^{2 n} - 3\right) \left(3^{n} - 2\right)}{2^{2 n} - 64 \cdot 4^{n}}