(2u + v)^2 + (u-v)(2u-v)
You asked:
Evaluate the expression: \({\left( 2 u + v \right)}^{2} + \left(u - v\right) \cdot \left(2 u - v\right)\)
MathBot Answer:
Evaluated
\(\displaystyle {\left( 2 u + v \right)}^{2} + \left(u - v\right) \cdot \left(2 u - v\right) = \left(2 u - v\right) \left(u - v\right) + \left(2 u + v\right)^{2} \)
Expanded
\[{\left( 2 u + v \right)}^{2} + \left(u - v\right) \cdot \left(2 u - v\right) = 6 u^{2} + u v + 2 v^{2}\]
Factored
\[{\left( 2 u + v \right)}^{2} + \left(u - v\right) \cdot \left(2 u - v\right) = 6 u^{2} + u v + 2 v^{2}\]