\frac{1}{1+\log _a\left(bc\right)}+\frac{1}{1+\log _b\left(ac\right)}+\frac{1}{1+\log _c\left(ab\right)}

asked by guest
on Nov 14, 2024 at 6:54 pm



You asked:

Evaluate the expression: 11+loga(bc)+11+logb(ac)+11+logc(ab)\frac{1}{1 + \log_{a}\left( b c \right)} + \frac{1}{1 + \log_{b}\left( a c \right)} + \frac{1}{1 + \log_{c}\left( a b \right)}

MathBot Answer:

Evaluated



11+loga(bc)+11+logb(ac)+11+logc(ab)=11+log(ab)log(c)+11+log(ac)log(b)+11+log(bc)log(a)\displaystyle \frac{1}{1 + \log_{a}\left( b c \right)} + \frac{1}{1 + \log_{b}\left( a c \right)} + \frac{1}{1 + \log_{c}\left( a b \right)} = \frac{1}{1 + \frac{\log{\left(a b \right)}}{\log{\left(c \right)}}} + \frac{1}{1 + \frac{\log{\left(a c \right)}}{\log{\left(b \right)}}} + \frac{1}{1 + \frac{\log{\left(b c \right)}}{\log{\left(a \right)}}}


Expanded

11+loga(bc)+11+logb(ac)+11+logc(ab)=11+log(ab)log(c)+11+log(ac)log(b)+11+log(bc)log(a)\frac{1}{1 + \log_{a}\left( b c \right)} + \frac{1}{1 + \log_{b}\left( a c \right)} + \frac{1}{1 + \log_{c}\left( a b \right)} = \frac{1}{1 + \frac{\log{\left(a b \right)}}{\log{\left(c \right)}}} + \frac{1}{1 + \frac{\log{\left(a c \right)}}{\log{\left(b \right)}}} + \frac{1}{1 + \frac{\log{\left(b c \right)}}{\log{\left(a \right)}}}


Factored

11+loga(bc)+11+logb(ac)+11+logc(ab)=3+2log(ab)log(c)+2log(ac)log(b)+log(ab)log(ac)log(b)log(c)+2log(bc)log(a)+log(ab)log(bc)log(a)log(c)+log(ac)log(bc)log(a)log(b)(1+log(bc)log(a))(1+log(ac)log(b))(1+log(ab)log(c))\frac{1}{1 + \log_{a}\left( b c \right)} + \frac{1}{1 + \log_{b}\left( a c \right)} + \frac{1}{1 + \log_{c}\left( a b \right)} = \frac{3 + \frac{2 \log{\left(a b \right)}}{\log{\left(c \right)}} + \frac{2 \log{\left(a c \right)}}{\log{\left(b \right)}} + \frac{\log{\left(a b \right)} \log{\left(a c \right)}}{\log{\left(b \right)} \log{\left(c \right)}} + \frac{2 \log{\left(b c \right)}}{\log{\left(a \right)}} + \frac{\log{\left(a b \right)} \log{\left(b c \right)}}{\log{\left(a \right)} \log{\left(c \right)}} + \frac{\log{\left(a c \right)} \log{\left(b c \right)}}{\log{\left(a \right)} \log{\left(b \right)}}}{\left(1 + \frac{\log{\left(b c \right)}}{\log{\left(a \right)}}\right) \left(1 + \frac{\log{\left(a c \right)}}{\log{\left(b \right)}}\right) \left(1 + \frac{\log{\left(a b \right)}}{\log{\left(c \right)}}\right)}