L−1(2+2e−2s−4e−3ss(1−e−3s)) solve

asked by guest
on Mar 28, 2025 at 8:46 am



You asked:

Evaluate the expression: L1(2+2e2s4e3ss(1e3s))L - 1 \left(2 + 2 e - 2 s - 4 e - 3 s \cdot s \left(1 - e - 3 s\right)\right)

MathBot Answer:

Evaluated



L1(2+2e2s4e3ss(1e3s))=L+3s2(3se+1)+2s2+2e\displaystyle L - 1 \left(2 + 2 e - 2 s - 4 e - 3 s \cdot s \left(1 - e - 3 s\right)\right) = L + 3 s^{2} \left(- 3 s - e + 1\right) + 2 s - 2 + 2 e


Expanded

L1(2+2e2s4e3ss(1e3s))=L9s33s2e+3s2+2s2+2eL - 1 \left(2 + 2 e - 2 s - 4 e - 3 s \cdot s \left(1 - e - 3 s\right)\right) = L - 9 s^{3} - 3 s^{2} e + 3 s^{2} + 2 s - 2 + 2 e


Factored

L1(2+2e2s4e3ss(1e3s))=L9s33s2e+3s2+2s2+2eL - 1 \left(2 + 2 e - 2 s - 4 e - 3 s \cdot s \left(1 - e - 3 s\right)\right) = L - 9 s^{3} - 3 s^{2} e + 3 s^{2} + 2 s - 2 + 2 e


ee is Euler's number, a mathematical constant that is approximately 2.718282.71828.