(3p-2q)(4p+8q)-1/2(2p+16q)(2p-16q)

asked by guest
on Nov 16, 2024 at 3:03 pm



You asked:

Evaluate the expression: \(\left(3 p - 2 q\right) \cdot \left(4 p + 8 q\right) - \frac{1}{2 \cdot \left(2 p + 16 q\right) \cdot \left(2 p - 16 q\right)}\)

MathBot Answer:

Evaluated



\(\displaystyle \left(3 p - 2 q\right) \cdot \left(4 p + 8 q\right) - \frac{1}{2 \cdot \left(2 p + 16 q\right) \cdot \left(2 p - 16 q\right)} = \left(3 p - 2 q\right) \left(4 p + 8 q\right) - \frac{1}{2 \cdot \left(2 p - 16 q\right) \left(2 p + 16 q\right)} \)


Expanded

\[\left(3 p - 2 q\right) \cdot \left(4 p + 8 q\right) - \frac{1}{2 \cdot \left(2 p + 16 q\right) \cdot \left(2 p - 16 q\right)} = 12 p^{2} + 16 p q - 16 q^{2} - \frac{1}{8 p^{2} - 512 q^{2}}\]


Factored

\[\left(3 p - 2 q\right) \cdot \left(4 p + 8 q\right) - \frac{1}{2 \cdot \left(2 p + 16 q\right) \cdot \left(2 p - 16 q\right)} = \frac{96 p^{4} + 128 p^{3} q - 6272 p^{2} q^{2} - 8192 q^{3} p + 8192 q^{4} - 1}{8 \left(p - 8 q\right) \left(p + 8 q\right)}\]