1/3+1/3×1/3×1/3×3/1-1/3×1/3
You asked:
MathBot Answer:
\[\frac{1}{3} + \frac{\frac{\frac{\frac{1}{3} \cdot 1}{3} \cdot 1}{3} \cdot 3}{1} - \frac{\frac{1}{3} \cdot 1}{3} = \frac{1}{3} = 0.\overline{3}\]
\[\begin{aligned}\frac{1}{3} + \frac{\frac{\frac{\frac{1}{3} \cdot 1}{3} \cdot 1}{3} \cdot 3}{1} - \frac{\frac{1}{3} \cdot 1}{3}& = \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{3}{3} \cdot 1^{-1} - \frac{1}{3} \cdot \frac{1}{3}\\& = \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{3}{3} - \frac{1}{3} \cdot \frac{1}{3}\\& = \frac{1}{3} + \frac{1}{9} \cdot \frac{3}{3} - \frac{1}{3} \cdot \frac{1}{3}\\& = \frac{1}{3} + \frac{3}{27} - \frac{1}{3} \cdot \frac{1}{3}\\& = \frac{1}{3} + \frac{1}{9} - \frac{1}{3} \cdot \frac{1}{3}\\& = \frac{1}{3} + \frac{1}{9} - \frac{1}{9}\\& = \frac{4}{9} - \frac{1}{9}\\& = \frac{1}{3}\end{aligned}\]