\cos \left(x\right)^4+\sin \left(x\right)^2+\sin \left(x\right)^2\cdot \cos \left(x\right)^2

asked by guest
on Nov 15, 2024 at 5:22 am



You asked:

Evaluate the expression: \(\cos\left( {x}^{4} \right) + \sin\left( {x}^{2} \right) + \sin\left( {x}^{2} \right) \cdot \cos\left( {x}^{2} \right)\)

MathBot Answer:

\[\cos\left( {x}^{4} \right) + \sin\left( {x}^{2} \right) + \sin\left( {x}^{2} \right) \cdot \cos\left( {x}^{2} \right) = \sin{\left(x^{2} \right)} \cos{\left(x^{2} \right)} + \sin{\left(x^{2} \right)} + \cos{\left(x^{4} \right)}\]