(1.5*10^-1)-(1*10^-1*10)-(5*10^-2)

asked by guest
on Apr 04, 2025 at 4:37 am



You asked:

Evaluate the expression: 1.510111011051021.5 \cdot {10}^{-1} - 1 \cdot {10}^{-1} \cdot 10 - 5 \cdot {10}^{-2}

MathBot Answer:

1.51011101105102=910=0.91.5 \cdot {10}^{-1} - 1 \cdot {10}^{-1} \cdot 10 - 5 \cdot {10}^{-2} = - \frac{9}{10} = -0.9


1.51011101105102=321011101105102=321101101105102=3201101105102=3201110105102=320110105102=32015102=17205102=172051100=1720120=910\begin{aligned}1.5 \cdot {10}^{-1} - 1 \cdot {10}^{-1} \cdot 10 - 5 \cdot {10}^{-2}&=\frac{3}{2} \cdot {10}^{-1} - 1 \cdot {10}^{-1} \cdot 10 - 5 \cdot {10}^{-2}\\&=\frac{3}{2} \cdot \frac{1}{10} - 1 \cdot {10}^{-1} \cdot 10 - 5 \cdot {10}^{-2}\\&=\frac{3}{20} - 1 \cdot {10}^{-1} \cdot 10 - 5 \cdot {10}^{-2}\\&=\frac{3}{20} - 1 \cdot \frac{1}{10} \cdot 10 - 5 \cdot {10}^{-2}\\&=\frac{3}{20} - \frac{1}{10} \cdot 10 - 5 \cdot {10}^{-2}\\&=\frac{3}{20} - 1 - 5 \cdot {10}^{-2}\\&=\frac{-17}{20} - 5 \cdot {10}^{-2}\\&=\frac{-17}{20} - 5 \cdot \frac{1}{100}\\&=\frac{-17}{20} - \frac{1}{20}\\&=\frac{-9}{10}\end{aligned}