asked by guest
on Nov 15, 2024 at 4:28 am
You asked:
Solve the equation
y = 2 8 x 6 y = \frac{2}{8 {x}^{6}} y = 8 x 6 2 for the unknown
x x x .
MathBot Answer:
x = − 2 2 3 1 y 6 2 x = 2 2 3 1 y 6 2 x = − 2 2 3 1 y 6 4 − 2 2 3 3 i 1 y 6 4 x = − 2 2 3 1 y 6 4 + 2 2 3 3 i 1 y 6 4 x = 2 2 3 1 y 6 4 − 2 2 3 3 i 1 y 6 4 x = 2 2 3 1 y 6 4 + 2 2 3 3 i 1 y 6 4 \begin{aligned}x &= - \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{2}\\x &= \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{2}\\x &= - \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\\x &= - \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\\x &= \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\\x &= \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\end{aligned} x x x x x x = − 2 2 3 2 6 y 1 = 2 2 3 2 6 y 1 = − 4 2 3 2 6 y 1 − 4 2 3 2 3 i 6 y 1 = − 4 2 3 2 6 y 1 + 4 2 3 2 3 i 6 y 1 = 4 2 3 2 6 y 1 − 4 2 3 2 3 i 6 y 1 = 4 2 3 2 6 y 1 + 4 2 3 2 3 i 6 y 1 and x ≠ 0 x \neq 0 x = 0