solve for x in y= 2/8x^6

asked by guest
on Nov 15, 2024 at 4:28 am



You asked:

Solve the equation y=28x6y = \frac{2}{8 {x}^{6}} for the unknown xx.

MathBot Answer:

x=2231y62x=2231y62x=2231y642233i1y64x=2231y64+2233i1y64x=2231y642233i1y64x=2231y64+2233i1y64\begin{aligned}x &= - \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{2}\\x &= \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{2}\\x &= - \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\\x &= - \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\\x &= \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\\x &= \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\end{aligned} and x0x \neq 0