solve for x in y= 2/8x^6
You asked:
Solve the equation \[y = \frac{2}{8 \cdot {x}^{6}}\] for the unknown \(x\).
MathBot Answer:
$$\begin{aligned}x &= - \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{2}\\x &= \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{2}\\x &= - \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\\x &= - \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\\x &= \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\\x &= \frac{2^{\frac{2}{3}} \sqrt[6]{\frac{1}{y}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i \sqrt[6]{\frac{1}{y}}}{4}\end{aligned}$$ and \(x \neq 0\)